P=-0.5x^2+36x-182

Simple and best practice solution for P=-0.5x^2+36x-182 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P=-0.5x^2+36x-182 equation:



=-0.5P^2+36P-182
We move all terms to the left:
-(-0.5P^2+36P-182)=0
We get rid of parentheses
0.5P^2-36P+182=0
a = 0.5; b = -36; c = +182;
Δ = b2-4ac
Δ = -362-4·0.5·182
Δ = 932
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{932}=\sqrt{4*233}=\sqrt{4}*\sqrt{233}=2\sqrt{233}$
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-2\sqrt{233}}{2*0.5}=\frac{36-2\sqrt{233}}{1} $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+2\sqrt{233}}{2*0.5}=\frac{36+2\sqrt{233}}{1} $

See similar equations:

| -8.5=4.3+w/8 | | 33=p-6.1 | | 3(4x-3)^(2/3)=0 | | 9^x=55 | | 18000-450x=6000 | | 6000=450x | | 10^2x+1=123 | | 2^x+3=7^-7x | | 2(7-3x)=56 | | 10^3x=75 | | 10^x=3000 | | 4-2x÷5=3.6 | | 10^x=49 | | 7n+n=120 | | (4x-10)^1/2=(2x-13)^1/2+1 | | 5(10)^2x=60 | | 2n+3.5=6.9 | | -5/6x^2+11/7x-6/5=0 | | 4-(2x-1)=3x | | (-5/6)x^2+(11/7)x-(6/5)=0 | | 5x+15=505 | | 4=7/3-6/z | | C(x)=3(x)^2-18x+81 | | 8(j-4=(4j-16) | | 4x+10=198 | | 10x^2+182x-85=0 | | 8(6x-3)=45 | | -1-9=-2x-3x | | 3x=4+6 | | X(x-17)18x=(x-3)(x+16) | | 6n−6n−12=14−2 | | 1/4(n-3)=-15 |

Equations solver categories